Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases
نویسندگان
چکیده
Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate-cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD.
منابع مشابه
Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases.
Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic end product is cholesterol. In addition to lowering circulating cholesterol, statins perturb the composition of cell membranes, resulting in disruption of lipid rafts, which function as signaling platforms i...
متن کاملMevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link
The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especial...
متن کاملMevalonate kinase deficiency: current perspectives
Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and m...
متن کاملMolecular mechanisms responsible for neuroinflammation and neurological impairments in mevalonate kinase deficiency☆
Mevalonate kinase deficiency (MKD) is due to by pathogenic mutations in the MVK gene that cause a reduced activity of the enzyme [1]. Specifically, it is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent fevers. Although the knowledge of MKD pathogenesis has increased, the link between gen...
متن کاملMolecular Basis for Rab Prenylation
Rab escort proteins (REP) 1 and 2 are closely related mammalian proteins required for prenylation of newly synthesized Rab GTPases by the cytosolic heterodimeric Rab geranylgeranyl transferase II complex (RabGG transferase). REP1 in mammalian cells is the product of the choroideremia gene (CHM). CHM/REP1 deficiency in inherited disease leads to degeneration of retinal pigmented epithelium and l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 94 شماره
صفحات -
تاریخ انتشار 2016